

WATER SANITATION AT POINT OF ENTRY

ALWAYS REFER TO PRODUCT LABELS

Available actives	Concentration	ncentration pH of mixture ORP		Exposure time	
Calcium hypochlorite (Chlorine; Ca (ClO ₂)	150 – 200 ppm <mark>75 – 100 ppm free chlorine</mark> (30 g / 100 & of a 680 g/kg formulation)	6,5 – 7,5	> 800 mV	2 min (minimum)	
Chlorine dioxide (ClO ₂)	Please consult with the supplier, differs for each system $5,0 - 7,5$ ≥ 670 mV		2 min (minimum)		
Plant based actives	Please consult with the supplier, differs for each system Variable N/A		N/A	1-3 min	
Ozone (O ₃)	Consult supplier	N/A	N/A	15 s	
Peracetic acid (PAA)	140 - 420 ppm Higher ppm can lead to phytotoxicity 0,1 – 0,4%, depending on formulation	3,0 - 8,0	N/A	1-2 min	

Concentration Management

- 1. The use of an automatic dosing system is preferable.
- Always dissolve granular chemicals in lukewarm water (35 – 40°C) before adding to the flume.
- Maintain concentration and mixture parameters (e.g. pH) to keep products effective – measure every 1 hour.
- 4. Replace recirculating mixtures when dirty.

Warnings and Important Information

- Some sanitation (disinfectant) products are incompatible with fungicides or each other. Always check the compatibility before use.
- 2. Some sanitisers will dissipate after a period of time so concentration measurement and management is crucial.
- 3. The efficacy of a system is dependent on each unique packhouse, e.g. roof height, air flow, humidity, length of line, etc.
- 4. Pre-sort and remove decayed/injured fruit to reduce pressure on the system and prevent the spread of disease.

REVISED 2024

PRE-PACKHOUSE DRENCH ALWAYS REFER TO PRODUCT LABELS

General recommendation: Thiabendazole + Pyrimethanil + 2,4-D + Peracetic acid/Stabilized glutaraldehyde/Clove oil disinfectant

- 1. The aim is to protect fruit from decay during storage and degreening.
- 2. Thiabendazole and pyrimethanil may be replaced with other fungicides provided they will not be applied again in the packhouse.
- 3. NB: ENSURE THAT FUNGICIDES FROM DIFFERENT FRAC GROUPS ARE SELECTED.

Mixing protocol

- 1. Fill water tank to 80% capacity and start pump(s).
- Pre-suspend fungicides individually in lukewarm water (35 – 40°C).
- 3. Order of mixing: SG SC EC SL
- 4. Fill water tanks to full capacity.
- 5. Let the system run for 15 min before commencing treatment to facilitate thorough mixing.

Operation

- 1. The drench system must deliver at least 500 ℓ drench mixture/bin/minute.
- 2. Exposure time must be 1 to 3 minutes.
- 3. Replace mixture after 150 bins (1 000 ℓ), or 200 bins (2 000 ℓ), or 300 bins (3 000 ℓ).
- 4. Mixtures can be sanitised with a registered and compatible sanitiser.
- 5. **Constant** agitation of mixture is necessary.

REVISED 2024

Construction of the second of

General recommendation: Imazalil as sulphate + 2,4-D

- 1. The aim is to offer the best possible decay control of green and blue mould.
- 2. Imazalil as a sulphate is pH sensitive. Residue loading will be effected by exposure time and temperature. Consult supplier or CRI for assistance as required.
- 3. Alternative fungicides may be used but beware of mixing and heating restrictions e.g. SC-formulations will settle and pyrimethanil will lead to increased residue loading and possible MRL exceedances at high temperatures, especially on lemons.

Mixing protocol

- 1. Fill water tank to 80% capacity and start pump(s).
- Pre-suspend fungicides individually in lukewarm water (35 – 40°C).
- 3. Order of mixing: SG SC EC SL
- 4. Fill water tanks to full capacity.
- Let the system run for 15 minutes before commencing treatment to facilitate thorough mixing.

NB: For IMZ sulphate, if initial pH of water > 7; adjust to pH 7 BEFORE addition of imazalil. The pH of the imazalil mixture should never exceed 6; adjust pH if needed.

Operation

- 1. Measure concentrations at least twice daily if method is available, and amend or top-up according to supplier recommendations.
- 2. Renew mixture AT LEAST once a week, preferably daily; sanitise appropriately.
- 3. Mixtures used for more than one day can be pasteurised by heating to 60°C for 60 minutes (without fruit), and letting it cool down overnight before use.
- Effective exposure periods must be adjusted considering pH, temperature and exposure time. These thee variables determines residue loading.
- The mixture temperature may range between 35 45°C. Mostly, for the bath, 35°C is ideal, while 45°C is suitable for the in-line drench.
- 6. For short exposure times, the use of heated imazalil mixtures is essential.
- 7. Optimum mixture temperature also depend on the cultivar and sensitivity of the specific fruit.
- 8. For soft citrus maximum pH 5 is recommended to prevent overloading of residues.

REMEMBER TO RECORD THE TIME WHERE FRUIT IS IN CONTACT WITH THE CHEMICAL MIXTURE. APPLY pH AND TEMPERATURE ACCORDINGLY.

REVISED 2024

General recommendation:

- 1. The aim is to offer long term disease protection to maturing fruit during transport and storage.
- 2. Imazalil EC added in the wax offers a different action to that provided in the water application.
- 3. Thiabendazole offers protection against chilling injury and latent pathogens.
- 4. Fludioxonil can be used in the wax. It assists with sporulation control, especially when combined with TBZ.
- 5. If 2,4-D is required in the wax, ensure it is pre-mixed from the supplier.

Mixing Protocol

- 1. Fill wax applicator tank with wax to 80% capacity.
- 2. Start mixer/agitator.
- 3. Premix each product separately in a small amount of lukewarm water (± 40°C) before adding it to wax.
- 4. Order of mixing: EC- SC- SL
- 5. Fill wax applicator tank to full capacity (100%).
- 6. Agitate for at least 15 min before use.
- 7. To prevent precipitation of certain formulations, mix continuously, agitator should be active 24 hours per day.
- 8. Keep the tank closed to prevent evaporation.

Operation

- Apply wax as specified by supplier.
- Prevent wind from drying tunnels blowing onto the waxing unit.
- Ensure an even spread of wax on brushes (follow wax supplier recommendations).
- Brushes should always be moist with wax, but no visual foam should be formed.
- At the end of a packing day, wash brushes in hot water to remove wax.

REVISED 2024

POSTHARVEST REGISTERED ACTIVES

HIGH-VOLUME WATER APPLICATION

Active ingredient (formulation)	FRAC	Target		ppm
2,4 D Sodium Salt (25 SL)	PGR	Plant Growth Regulator (PGR). Prevents abscission of the calyx	ELS	250
Thiabendazole (500 SC)	1	Stem-end rot, Green and Blue mould	ДB	1000
Imazalil as sulphate (750 SG)	3	Green mould, Blue mould		500
Propiconazole (250 EC)	3	Sour rot, Green mould, Blue mould	<u></u>	600
Guazatine (210 SL)	M7	Sour rot, Green mould, Blue mould	NC	1000
Pyrimethanil (400 SC)	9	Green mould, Blue mould	ō	1000
Pyrimethanil Propiconazole (150 +120 EC)	9 3	Sour rot, Green mould, Blue mould) PR(750 600
Azoxystrobin (250 SC)	11	Green mould, Blue mould, brown rot	2	1125
Fludioxonil (230 SC)	12	Green mould, Blue mould		600
Azoxystrobin Fludioxonil (240+240 SC)	11 12	Green mould, Blue mould		600 600
Imazalil Pyrimethanil (400 SC)	3 9	Green mould, Blue mould	S R	500 500
Sani-D range	NC	GRAS chemical		
Peracetic acid	NC	Disinfectant		
DDAC (120 SL)	NC	Disinfectant	AL	
Clove Oil 10 %	46	Disinfectant		

REVISED 2024

POSTHARVEST REGISTERED ACTIVES

WAX APPLICATION							
Active ingredient (formulation)	FRAC	Target	LS	ppm			
2,4 D (25 SL)	PGR	Plant Growth Regulator Prevents abscission of the calyx	LABE	250			
Fludioxonil (230 SC)	12	Green Mould, Blue Mould sporulation control	DUCT	2300-4600			
Thiabendazole (500 SC)	1	Stem-end Rot, Green and Blue Mould	PROI	4000			
Imazalil (500 EC)	3	Green Mould, Blue Mould	0	2000 - 3000			
Imazalil (GRAS + 300 EC)	3	Green Mould, Blue Mould	EFER 1	3000			
Propiconazole (250 EC)	3	Green Mould, Blue Mould sporulation control	YS RI	1800			
Guazatine Formulated Waxes (3g/ℓ)	M7	Sour Rot, Green Mould, Blue Mould	MA	3000			
Pyrimethanil (400 SC)	9	Green Mould, Blue Mould	Al	4000			

REVISED 2024